Calcium & Polio Survivors


When asked this question SNAPS medical advisor Dr. Lynell Braught replied, “How big a book do you want?”

There are many benefits to having an adequate amount of calcium. Dr. Braught encourages polio survivors to supplement their diets with calcium because muscle movement is dependent on calcium. When a polio survivor is low in calcium, there will be less muscle function possible.

Here how it works:

Let’s start at the beginning. Only a few people with post polio are able to digest protein. Therefore it is a good idea for people with post polio to supplement their diets with a good quality digestive enzyme to help digest protein.

Protein is required by the brain to fire a signal to the spinal cord. The spinal cord needs to send its signal to fire a nerve. That nerve then fires a muscle causing it to move.  Without enough protein, the brain cannot send its signal to the spinal cord.

Once the spinal cord receives a signal from the brain, the spinal cord relies on calcium for getting that signal to the appropriate nerve. Without enough calcium there are not enough electrons to keep the signal moving along. Therefore without enough calcium, there is little electron firing of the nerve. Little nerve firing means little movement of the muscle. Now you understand why an adequate supply of calcium is so vitally important for maintaining mobility.

When choosing a calcium supplement, please keep in mind not all calcium is created equal. Some forms are much better (more useable) than others.

The human body can only use minerals that are organic in nature. “Organic” means “fully soluble in water, small enough to enter a cell and in a form the body can use without changing it.” Unfortunately most calcium supplements are not organic.

Calcium naturally occurs as compound molecules. Some examples are: calcium carbonate, calcium lactate, calcium gluconate, and calcium phosphate. These calcium compound molecules can be quite large in relation to an individual cell. Obviously if the calcium molecule is larger than the cell, it cannot go into the cell. It just doesn’t fit.

To make it useable the body has to break the large calcium molecules apart. Unfortunately our digestive systems often are not strong enough to break them. Sometimes (as in the case of calcium lactate) the problem is an indigestible compound attached to the calcium. (Nursing infants are able to break down calcium lactate – the calcium found in milk – but as we get older we seem to lose that ability.)

Some compound molecules have a strong electrical bond holding the molecule together. If our digestive system isn’t strong enough to break that bond, then it remains large and unusable.

Another problem is not all forms of calcium are water-soluble. Take calcium carbonate, for instance. It dissolves in the acid in the stomach. Therefore it’s absorbable, right? That’s what some advertisements claim. Unfortunately it does get absorbed into the blood but it is still not useable at the cellular level.

Since calcium carbonate dissolves in the stomach acid, it passes through the stomach wall into the blood. While going through the stomach wall, however, the acid gets stripped off. Since calcium carbonate is not water-soluble, when it enters the watery arena of our blood, it returns to its solid state. In its solid form calcium carbonate is too big to go into your cells. It’s like having little rocks floating through your blood! When we have calcium in a large size, it cannot satisfy the body’s calcium requirement.

One of the most important functions of calcium is maintaining the correct acid-alkaline balance (pH) of blood. The blood pH is critically important because life is possible only within a narrow pH range. Therefore your body will do whatever it takes to keep the blood pH balanced. If that means robbing other areas of the body to get useable calcium, then that’s what your body will do.

When there is not enough calcium available within the body’s cells, calcium is pulled out of bone storage. That is one of the causes of osteoporosis.

Not only does large calcium not satisfy the body’s requirement, but it can lead to problems. Even though the form of calcium may be too big to be used, it is still recognized by the body as calcium. Therefore the body wants to hold onto it. Sometimes these large calcium molecules get lodged BETWEEN cells and can lead to the formation of calcium deposits.

We’re all familiar with calcium deposits. They go by names like arthritis, kidney stones, gall stones and hardening (calcification) of the arteries. Many other diseases are traceable to an abundance of large size calcium in the body.

Here’s a beautiful thing… If we give our bodies organic calcium, after the body gets enough to satisfy its immediate needs, then bone storage gets replenished. As we continue taking the useable calcium, bone density that was previously too low starts increasing and bones become stronger.

Once the bone storage has been filled, the body no longer needs to store the large calcium. Therefore the large unusable calcium gradually gets released. Maybe there is still hope for those stiff joints!

Getting back to how calcium effects people with post polio: an adequate supply of calcium helps messages sent by the brain to reach nerves to trigger muscles to move. According to Dr. Lynell Braught, supplementing one’s diet with organic calcium gives a person the best chance for maintaining mobility and personal freedom.

There is still a lot that needs to be understood about post polio. Hopefully in the future researchers will find more answers. For now supplementing one’s diet with organic calcium and digestive enzymes appears to be very important.

Organic Water Soluble Calcium with added magnesium is available through a business called HealthCatchers. It is produced by Dr. Lynell Braught through a special proprietary method. His minerals are:

  • Fully soluble in water
  • Small enough to enter our cells
  • In a form ready for the body to use.

For more information please call Candice at 1-888-755-4358 (Be sure to ask about their new low price!) or visit the HealthCatchers website at